H(t)=-4t^2+6t-1

Simple and best practice solution for H(t)=-4t^2+6t-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4t^2+6t-1 equation:



(H)=-4H^2+6H-1
We move all terms to the left:
(H)-(-4H^2+6H-1)=0
We get rid of parentheses
4H^2-6H+H+1=0
We add all the numbers together, and all the variables
4H^2-5H+1=0
a = 4; b = -5; c = +1;
Δ = b2-4ac
Δ = -52-4·4·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3}{2*4}=\frac{2}{8} =1/4 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3}{2*4}=\frac{8}{8} =1 $

See similar equations:

| 2y=-68+3(5y+1) | | 5^x-1=5^3x-11 | | v+5.8=19.2 | | 5-4-3x=-36 | | p/2=1.54 | | 3x+(x-14)=33 | | 8u=456 | | 8u=455 | | n+(n+1)+(n+2)+(n+3)+55=3(n+4) | | c/27=7 | | -5y(y-5)=-3y+45 | | 8-2(12+12)=5-2x-13 | | 5-4|-3x|=-36 | | r-5=43 | | -4b=-8-6b^2+4b | | c+25=671 | | 4+9.75x=0.25x+ | | 5+5(n-1)=19 | | -(x+3)+4x=6 | | n+(n+1)+(n+2)+(n+3)+(n+4)=55 | | 10+7.5n=8+7.9n | | 128=k-39 | | h+94=891 | | (2x+7)=65 | | v+9-48=1 | | h+94=894 | | –17+15z=13z+19 | | 2n+8=60 | | 459=27g | | n+(n+1)+(2(n+2)+2(n+3)+55)=3(n+4) | | 634=p+551 | | H=210+33x |

Equations solver categories